This is a UF fractal made for the May 2012 UF Challenge: [link] written up in a News article by *heavenriver
The principle aim of this Challenge was to use None as the coloring algorithm for both the Inside and Outside. You can see, however, that just because you choose "None" doesn't mean that you don't get any color in the fractal. I will post another one shortly.
Here are the params if you want to check to see if I really did use "None" for the Inside and Outside coloring algorithms.
PW4GradEditOfColorMeNotUFChallengeMay2012 {
::TgM3kgn2lrZTvNSuRY47Dw8fohv3zQW87EoLZDSACymEggg9YggtstwaLZIrJZn/9po6mvVR
J6sInzsXWQaRWsIZ9WFf6HPt9+zbf5385PNNde/5X2t5u/2PN5ne602Hm29w+zTHfc6HO+yx
TT/4up/yxzT/j/w0P882XeZ3hn2N9jb/+EZs0d1f//e/DnfeT0bmee3+ne+8Gf2M9y2vv707
bop7PVHu35xf3TPtf6nO+yj7+thvaTfddAu8XexQuf7bn3f8wm7+z1mms3Nd8tt3v/833kKT
vu70T7e94D72882TP8Sdi42O/8xH2863e58+32++7XWNn2e4932ea3hzb++OupX3+2b7P80y
Mwtu70mZzXIL5C8/IT0G+K3gJYCJfJGc2pX3+0hNpv4jOnN5m2e4J2BZN2vEjlyn/0jHPxT5
2Lj4rb/l91h0aMTvt709Pv7+fezxHfc6x9sra7rsjd3hTz3f8w/a3pzf5bP+6dTsRc67bu7P
97n/7/xZziT8t/5b2Nxv4N+U8rVzzTlaj0G7XIT25cXMSbKHS12dbu7vexbxupP/p9Hef/D7
uYQPsj//ZXGt4JekttDHPsj3Pf89dnvYnvf8l9Psx85Pd8bnxvD/1vc8p2fsT/HXPasnN9L/
1v/6xj8m+hjTnOee7ldtZrvMt/wD7+lNmp7rHd2YLZ2rt2odtRyXoo1VHllOcrd488qzaWb1
3+ztmUwHWbNu2aOwbFyQka/xpQ0t2Wp1WpkIYENrwaJTxLjglQHuI1WI2mVwnDi5mpZDtWL2
YStSsN7I6TFqZz2cr1IfAjyrNTwLxLRXMRy4QwYCmSidKt2buK2GDUO2MTKc5w9q9HzE7Jbd
FR7Jf06xs3MqcqE8FjaybOucMGKhm70Zlm5lhv1czkyUyTpkabt57i5CxOqWzNDKYihsHN3c
d2Y0x2paca2j3QU018q+m7LGsOjtZmeCzqzntWZc8NLNks8agaN32M9Jnhwy13sHfwlSusac
y4kpN4TNHdA2jpUioVceLwXmUbxB434DntDWBco3EpmlEaOsiPn1H6DNDhvjVIfbBFwBfe7g
KtxO2sEHbfpoMMRCnxdhS78RUO57twAj4kPfqMo2ki4kfJ58NTP2swQMkCthO18Ue2wNB914
mpEKOjL12qTNfVxk44jtT9puT9Br1Ha+gEO1b47hBDaHuMKF9FrabNVgbueZvtizN3WgPD7D
NTK7whSPHKS5Oz4YfyFswVkFLy58Jf7KdOpWEUJkNW0VRWE5CvCbB2Qgj6cbjqz4FCeK+0Wq
NSlmNVsElzNvRptbmis/wp2OL40PZ4oGtduSGrarRu7yaKyiIUjJitua4/W8BOyqEY14kofc
cjg6qBvsQsATOnSIurBOReZniuE6Ir9iuYxJR8NFpD+uGOLbFtA2Acc0LlJIyB8VCbW9jgt5
4waGc9n3eETgnf+4OcPQWowOzk0MC0yH40RqsQag3edBPamgkmLmRr4ooN7za1IKAJXfB7Ii
iALr6wGCEEoqPSpHwRXltDvHeCIIwJJF9IAs15EHhjDoaTE6yDNkCLqjFmTEp8cQOS7LEhBD
L5RqfUBzPn1WGbEe1hxcNHP4pg2ArXYMyPARd5xPjx3r2Q9cAWEcx6l9TjT+7xlDbKhLxsCu
MMktwRCRPIjosPkxGBUG4IdFc1zGUmTuqgJjDSKK69O5HA7hPLSwMXi3ue8KYMy4AFCKU4gU
S7wt5DsSoKWnFqEcWrscLOaHbmkPyZQ4wZmoKaXN1a+KE6qA9zA5ktBoWki8t0ujGQuIS+cg
wGK0L429JDsKtgRizlgD0jui4qrhDnLzOcic4cHp0LsZjkIjtIn/VKGsIOC0bzq7F8OOnBnk
goksbOmQ8ZrIawnESpie2xZQWGLgDPimBLxYMo9iVN51LsS8RoZw5OHzIxRLEN4Ew5I6edkF
ocwhq4YgR4ihwBHe0b4T7oDdEa+EJnmgDJCjAMsN7rR/adgI0uaSekyEIlAizziRyopsNOIB
u2y5UpFJoaBAyPKL1FwRcTSS6wh6KFT2o2DIRAh4QpRcaiUFTwJjXg6BtkXL+RUukkfUUvYD
O5HlkkWIWRMoNBRcj401TYBBJkS2Vz3DtTiFUM1yLCoLJB5aiFY+hMiLbq59prTJJF15kYYk
ImErpcgtAnKYI7mjEKLggcSi4o2ogPSKwoG0OqPCIyJGOyNOsTOJgIndBiQzy/q1eoW3jMLF
xn4JE1lLkCZOx3ST6ykkKNiEn2GWjQOh1E5iiQhYa9EKZ4rqYrHCKs+nrAJOCSK1MGVlWRBJ
FQ2t0+7vUBeTTkzcyKtn0JoxBrTSXNnVijh5UDFKAokz60KmtoSqU9+OaVSnynrXoQH6NdO/
nIOlOzeomVVrCmkpH7hcGHZT/87QeNGPHjNIdgCF46HQumc7kO4DfuR9Tw9EKL5EMbRVw26G
lLqnfSFkzy5AIdgS1qBylFDpv2XrmU5nlk6sRWOW2zI4PT8d+IptActn4OyOxsxbNwHjY1dV
HRdaI8eianDvnBL8Fpo0uD3i5SoydGgUXbi14VjlR2p57uypAdK6ejJbh0P3XCRYq39FfAil
z3jKrHkQfeJPWbxJbpGkvC7odZx20lpw5ymoE2GKwh648pQ2bzQPr+yDuujBloY0cyA4MN0N
5VZhkVZxpLQIy3VlfCKSyzhkh4zsqSP+YTUL+MnFFL+OVCJyPjkGK8upF1JMn1Z/Y4yqQBlz
oaWO7UOwBW9ZxTGNGdNazI7HuKTTSWKoMaWHWVv3cKpP/xKzqfiovwJfhoizJP0j4o46ycnR
mf5StmOZWEF5SNXYs/GVZ9W4csM45SmjqnRxVfhJ0BiMGSZru84Z8OI8ZlcE6ezRk7ekKGkL
1c0qz7lnIvYZYPOH8Fk73s86OcxbU3R/g+5OtIPq5AckmaiFS7qwP1HmUKceOIpQzTisQgAD
HUk/nKljZoxwFwVT5AtngPhTJFvN5sXF5p+OQRZXRkK5aX5a2R7IwTJH41ve2FVGbNh8W7O5
xScKXiTF1hriXKDeWSSIIFNNDpFedLOQdJtcmsctRY15Q47sJJxblamJRPfmUnC5YtyD/NLJ
SZClCGdk61lr/kKFgZS9QEZkf3MkT8m6/hm15/ndcaZS8SZ/kL8SpamRiBOOL2uYvw3Vq5YL
DlXyuKmNK1c1tvUVwQ0FsqQccFay0LCzhcO0F6Dl+wRG8ylfM5c9jSSR4Ru48/iGdUEngYgL
nW8VIoHHNmt8VIUXx9oR6ohoiqFoPgl1vb79/8TnO+tDPI4sqQYumd1/3DuSAQt/wutn+VBW
NA01/lf5vK9K5dQGqF+hKh+h6ghhqgpeBQ17tOUBEXBWFAvGV1q4n+xyGL/hE86l+05Eel4n
c5fR7Dlx3r7prEdoyHqpsX1TCetI6pGnYvsXr5xSeIL9VFPF1IzQBP3Y9OVlkXJ3BBhe1O3Y
xOXuXoTdMxMUqDyZrKdXzqaVlTNOhR6coIuONOU+4FJO1YUGIyJkq6E4C96bK6T+BKchwI1t
Qv4maMK9ybNsRmRSbxelNF7J3QhNJHtOdNJrurl1Qig9qa4BI7F1QqmrCaKSSuxSaIf2VFNw
qSJO2polGrohUsXV0ApKdG2aFtcvi21gq6o0rrSYlUPIVNkTfOPEUfR/K8VY9t2tjQ17Gxqv
0x3rirv1RcEreAnqjVfRly1Cu+bIT1Dr3Q906HylalY/tcp651bNa6e9M7Vcp6J2LlQ3Q2Pi
L1K2e0ubI0+OqU9g7FqUrk7R75eu9D5S1xuX9UFLw7F0U6a+107tQBoHfv8EK3wvXe2leA+y
T10Tw36UXIWp4juohM8FAVLQ81KrhOQ+3QnSjxXeVrLc8VjCUBWY5fDYqeS+WvGZQHNfrP0h
zHNH7g5rn68Ig+qXM8CR/bYTtwzXNOQQojpvN47h6Lwp0v8omqvNkGi13KqCrQ91AnMjB7LQ
qak9RH6aP6Q7bFFiO2+W8xMcDcfL0I6p7LUquCvPLA8h89tKhiOA/2k/DJ8Lkq6R8Lkq6Z8b
TqAgrc+vhUVPlfbm6x8rxO5Hj5PHGj5v/zbYh0P6L/BY+ln9aFzvm8E9BY+LuPAzfnMyKpf0
X8Dw8DxkGmftJUGi5XoV1h5nMONPargGmgeSHmfCqJaM/kWKZh0/NIq0Y+JRFRj5nr8QHSpS
6XYTNCzPJfsbLY+1p8nGi5ngCSPmfi0v/6Kpf0ndMmfhK1KmfN9J/IM/EkQ6w8rYSdBzvecK
jw8LEp0Y+JIdsg5fEOqOM/kQrQj5ngyxCmf94UGh5ng2RHmfBD1CmfNgK3IM/EUO6x8T63pb
l0/Nco6x8LYoWx8rJUZHi5nwX3QPmfS/Glrk+RXxhY+Jofsi5XP7lhY+JIf0j5niqbFrk+RX
+hY+Jl4xFM/6SYTDx8Tx8QM/USfvYh0P6yOCzPJKHLY+VTOeN9eM/UKOEzPl0g5XJ9j+Kjx8
TZ7VY+VGAUPuGzvUwxVY+11c0I9j+SfAm/c5KM/6vgVzHg5XUPuCzvGOTj0P6L8BY+V1hsg5
XbC5xY+dyH7QPmfnpLThFS/oP3YM/OIhsi5X/AIxhY+dm0QM/OjuSpFS/4T/1OEzvDVjsi5X
N7yXOdHmfnNMEzPHlQpSuQ6HdlHi53RmeM/qZHqJ9Y+dkbImfn+Doel0P6KOEzvjy9Y+1zeZ
ImfnzOEzvTjn+Cpf0hfImf5rwtjyvOT3eI/I54eG/Ia4Cif8g56MGVE+R82rA8j4zXB3XHS/
K8+oIiV6+odbPZ/RYn6Z77zD567jdY91jToHs/NMnuCqvX/Bz0h1HCyXh0Xq+bhovm4Qqnp/
NYnuinvzrf9iOi+6SY108xhsFY+aiRlOc+3ge6KU+Us7z2QDzn8jB5L5qtwxXP52eS+odzHQ
xXJLdNH/4YG+2QPD/uPZkeM+yHZxYG+WT3HrQHG/xI8TjJ43/C7XY4jjPfA/eqHfveV0Tv//
JyU/HIx1ONB=
}
The principle aim of this Challenge was to use None as the coloring algorithm for both the Inside and Outside. You can see, however, that just because you choose "None" doesn't mean that you don't get any color in the fractal. I will post another one shortly.
Here are the params if you want to check to see if I really did use "None" for the Inside and Outside coloring algorithms.
PW4GradEditOfColorMeNotUFChallengeMay2012 {
::TgM3kgn2lrZTvNSuRY47Dw8fohv3zQW87EoLZDSACymEggg9YggtstwaLZIrJZn/9po6mvVR
J6sInzsXWQaRWsIZ9WFf6HPt9+zbf5385PNNde/5X2t5u/2PN5ne602Hm29w+zTHfc6HO+yx
TT/4up/yxzT/j/w0P882XeZ3hn2N9jb/+EZs0d1f//e/DnfeT0bmee3+ne+8Gf2M9y2vv707
bop7PVHu35xf3TPtf6nO+yj7+thvaTfddAu8XexQuf7bn3f8wm7+z1mms3Nd8tt3v/833kKT
vu70T7e94D72882TP8Sdi42O/8xH2863e58+32++7XWNn2e4932ea3hzb++OupX3+2b7P80y
Mwtu70mZzXIL5C8/IT0G+K3gJYCJfJGc2pX3+0hNpv4jOnN5m2e4J2BZN2vEjlyn/0jHPxT5
2Lj4rb/l91h0aMTvt709Pv7+fezxHfc6x9sra7rsjd3hTz3f8w/a3pzf5bP+6dTsRc67bu7P
97n/7/xZziT8t/5b2Nxv4N+U8rVzzTlaj0G7XIT25cXMSbKHS12dbu7vexbxupP/p9Hef/D7
uYQPsj//ZXGt4JekttDHPsj3Pf89dnvYnvf8l9Psx85Pd8bnxvD/1vc8p2fsT/HXPasnN9L/
1v/6xj8m+hjTnOee7ldtZrvMt/wD7+lNmp7rHd2YLZ2rt2odtRyXoo1VHllOcrd488qzaWb1
3+ztmUwHWbNu2aOwbFyQka/xpQ0t2Wp1WpkIYENrwaJTxLjglQHuI1WI2mVwnDi5mpZDtWL2
YStSsN7I6TFqZz2cr1IfAjyrNTwLxLRXMRy4QwYCmSidKt2buK2GDUO2MTKc5w9q9HzE7Jbd
FR7Jf06xs3MqcqE8FjaybOucMGKhm70Zlm5lhv1czkyUyTpkabt57i5CxOqWzNDKYihsHN3c
d2Y0x2paca2j3QU018q+m7LGsOjtZmeCzqzntWZc8NLNks8agaN32M9Jnhwy13sHfwlSusac
y4kpN4TNHdA2jpUioVceLwXmUbxB434DntDWBco3EpmlEaOsiPn1H6DNDhvjVIfbBFwBfe7g
KtxO2sEHbfpoMMRCnxdhS78RUO57twAj4kPfqMo2ki4kfJ58NTP2swQMkCthO18Ue2wNB914
mpEKOjL12qTNfVxk44jtT9puT9Br1Ha+gEO1b47hBDaHuMKF9FrabNVgbueZvtizN3WgPD7D
NTK7whSPHKS5Oz4YfyFswVkFLy58Jf7KdOpWEUJkNW0VRWE5CvCbB2Qgj6cbjqz4FCeK+0Wq
NSlmNVsElzNvRptbmis/wp2OL40PZ4oGtduSGrarRu7yaKyiIUjJitua4/W8BOyqEY14kofc
cjg6qBvsQsATOnSIurBOReZniuE6Ir9iuYxJR8NFpD+uGOLbFtA2Acc0LlJIyB8VCbW9jgt5
4waGc9n3eETgnf+4OcPQWowOzk0MC0yH40RqsQag3edBPamgkmLmRr4ooN7za1IKAJXfB7Ii
iALr6wGCEEoqPSpHwRXltDvHeCIIwJJF9IAs15EHhjDoaTE6yDNkCLqjFmTEp8cQOS7LEhBD
L5RqfUBzPn1WGbEe1hxcNHP4pg2ArXYMyPARd5xPjx3r2Q9cAWEcx6l9TjT+7xlDbKhLxsCu
MMktwRCRPIjosPkxGBUG4IdFc1zGUmTuqgJjDSKK69O5HA7hPLSwMXi3ue8KYMy4AFCKU4gU
S7wt5DsSoKWnFqEcWrscLOaHbmkPyZQ4wZmoKaXN1a+KE6qA9zA5ktBoWki8t0ujGQuIS+cg
wGK0L429JDsKtgRizlgD0jui4qrhDnLzOcic4cHp0LsZjkIjtIn/VKGsIOC0bzq7F8OOnBnk
goksbOmQ8ZrIawnESpie2xZQWGLgDPimBLxYMo9iVN51LsS8RoZw5OHzIxRLEN4Ew5I6edkF
ocwhq4YgR4ihwBHe0b4T7oDdEa+EJnmgDJCjAMsN7rR/adgI0uaSekyEIlAizziRyopsNOIB
u2y5UpFJoaBAyPKL1FwRcTSS6wh6KFT2o2DIRAh4QpRcaiUFTwJjXg6BtkXL+RUukkfUUvYD
O5HlkkWIWRMoNBRcj401TYBBJkS2Vz3DtTiFUM1yLCoLJB5aiFY+hMiLbq59prTJJF15kYYk
ImErpcgtAnKYI7mjEKLggcSi4o2ogPSKwoG0OqPCIyJGOyNOsTOJgIndBiQzy/q1eoW3jMLF
xn4JE1lLkCZOx3ST6ykkKNiEn2GWjQOh1E5iiQhYa9EKZ4rqYrHCKs+nrAJOCSK1MGVlWRBJ
FQ2t0+7vUBeTTkzcyKtn0JoxBrTSXNnVijh5UDFKAokz60KmtoSqU9+OaVSnynrXoQH6NdO/
nIOlOzeomVVrCmkpH7hcGHZT/87QeNGPHjNIdgCF46HQumc7kO4DfuR9Tw9EKL5EMbRVw26G
lLqnfSFkzy5AIdgS1qBylFDpv2XrmU5nlk6sRWOW2zI4PT8d+IptActn4OyOxsxbNwHjY1dV
HRdaI8eianDvnBL8Fpo0uD3i5SoydGgUXbi14VjlR2p57uypAdK6ejJbh0P3XCRYq39FfAil
z3jKrHkQfeJPWbxJbpGkvC7odZx20lpw5ymoE2GKwh648pQ2bzQPr+yDuujBloY0cyA4MN0N
5VZhkVZxpLQIy3VlfCKSyzhkh4zsqSP+YTUL+MnFFL+OVCJyPjkGK8upF1JMn1Z/Y4yqQBlz
oaWO7UOwBW9ZxTGNGdNazI7HuKTTSWKoMaWHWVv3cKpP/xKzqfiovwJfhoizJP0j4o46ycnR
mf5StmOZWEF5SNXYs/GVZ9W4csM45SmjqnRxVfhJ0BiMGSZru84Z8OI8ZlcE6ezRk7ekKGkL
1c0qz7lnIvYZYPOH8Fk73s86OcxbU3R/g+5OtIPq5AckmaiFS7qwP1HmUKceOIpQzTisQgAD
HUk/nKljZoxwFwVT5AtngPhTJFvN5sXF5p+OQRZXRkK5aX5a2R7IwTJH41ve2FVGbNh8W7O5
xScKXiTF1hriXKDeWSSIIFNNDpFedLOQdJtcmsctRY15Q47sJJxblamJRPfmUnC5YtyD/NLJ
SZClCGdk61lr/kKFgZS9QEZkf3MkT8m6/hm15/ndcaZS8SZ/kL8SpamRiBOOL2uYvw3Vq5YL
DlXyuKmNK1c1tvUVwQ0FsqQccFay0LCzhcO0F6Dl+wRG8ylfM5c9jSSR4Ru48/iGdUEngYgL
nW8VIoHHNmt8VIUXx9oR6ohoiqFoPgl1vb79/8TnO+tDPI4sqQYumd1/3DuSAQt/wutn+VBW
NA01/lf5vK9K5dQGqF+hKh+h6ghhqgpeBQ17tOUBEXBWFAvGV1q4n+xyGL/hE86l+05Eel4n
c5fR7Dlx3r7prEdoyHqpsX1TCetI6pGnYvsXr5xSeIL9VFPF1IzQBP3Y9OVlkXJ3BBhe1O3Y
xOXuXoTdMxMUqDyZrKdXzqaVlTNOhR6coIuONOU+4FJO1YUGIyJkq6E4C96bK6T+BKchwI1t
Qv4maMK9ybNsRmRSbxelNF7J3QhNJHtOdNJrurl1Qig9qa4BI7F1QqmrCaKSSuxSaIf2VFNw
qSJO2polGrohUsXV0ApKdG2aFtcvi21gq6o0rrSYlUPIVNkTfOPEUfR/K8VY9t2tjQ17Gxqv
0x3rirv1RcEreAnqjVfRly1Cu+bIT1Dr3Q906HylalY/tcp651bNa6e9M7Vcp6J2LlQ3Q2Pi
L1K2e0ubI0+OqU9g7FqUrk7R75eu9D5S1xuX9UFLw7F0U6a+107tQBoHfv8EK3wvXe2leA+y
T10Tw36UXIWp4juohM8FAVLQ81KrhOQ+3QnSjxXeVrLc8VjCUBWY5fDYqeS+WvGZQHNfrP0h
zHNH7g5rn68Ig+qXM8CR/bYTtwzXNOQQojpvN47h6Lwp0v8omqvNkGi13KqCrQ91AnMjB7LQ
qak9RH6aP6Q7bFFiO2+W8xMcDcfL0I6p7LUquCvPLA8h89tKhiOA/2k/DJ8Lkq6R8Lkq6Z8b
TqAgrc+vhUVPlfbm6x8rxO5Hj5PHGj5v/zbYh0P6L/BY+ln9aFzvm8E9BY+LuPAzfnMyKpf0
X8Dw8DxkGmftJUGi5XoV1h5nMONPargGmgeSHmfCqJaM/kWKZh0/NIq0Y+JRFRj5nr8QHSpS
6XYTNCzPJfsbLY+1p8nGi5ngCSPmfi0v/6Kpf0ndMmfhK1KmfN9J/IM/EkQ6w8rYSdBzvecK
jw8LEp0Y+JIdsg5fEOqOM/kQrQj5ngyxCmf94UGh5ng2RHmfBD1CmfNgK3IM/EUO6x8T63pb
l0/Nco6x8LYoWx8rJUZHi5nwX3QPmfS/Glrk+RXxhY+Jofsi5XP7lhY+JIf0j5niqbFrk+RX
+hY+Jl4xFM/6SYTDx8Tx8QM/USfvYh0P6yOCzPJKHLY+VTOeN9eM/UKOEzPl0g5XJ9j+Kjx8
TZ7VY+VGAUPuGzvUwxVY+11c0I9j+SfAm/c5KM/6vgVzHg5XUPuCzvGOTj0P6L8BY+V1hsg5
XbC5xY+dyH7QPmfnpLThFS/oP3YM/OIhsi5X/AIxhY+dm0QM/OjuSpFS/4T/1OEzvDVjsi5X
N7yXOdHmfnNMEzPHlQpSuQ6HdlHi53RmeM/qZHqJ9Y+dkbImfn+Doel0P6KOEzvjy9Y+1zeZ
ImfnzOEzvTjn+Cpf0hfImf5rwtjyvOT3eI/I54eG/Ia4Cif8g56MGVE+R82rA8j4zXB3XHS/
K8+oIiV6+odbPZ/RYn6Z77zD567jdY91jToHs/NMnuCqvX/Bz0h1HCyXh0Xq+bhovm4Qqnp/
NYnuinvzrf9iOi+6SY108xhsFY+aiRlOc+3ge6KU+Us7z2QDzn8jB5L5qtwxXP52eS+odzHQ
xXJLdNH/4YG+2QPD/uPZkeM+yHZxYG+WT3HrQHG/xI8TjJ43/C7XY4jjPfA/eqHfveV0Tv//
JyU/HIx1ONB=
}